Kliknij tutaj --> 🥉 która nierówność jest prawdziwa 16 49
Otrzymana nierówność jest oczywiście spełniona, a przekształcaliśmy przy pomocy równoważności, więc wyjściowa nierówność też musiała być prawdziwa. Spos ób II Ponieważ nierówność jest jednorodna (każdy składnik jest jednomianem stopnia 3), możemy łatwo zamienić nierówność na nierówność, w której jest tylko
0,130 > 0,1190,13 < 0,30Odp. A i B. oblicz ile wynosi jedna krawędź sześcianu jeżeli pole powierzchni całkowitej tej bryły wynosi 150 cm²
Rozwiązujemy nierówność: W tym przypadku mamy od razu wynik, ponieważ rozwiązaniem podanej nierówności ma być każda liczba rzeczywista, zatem o ile tylko końcowa nierówność jest prawdziwa, to są spełnione warunki zadania. Rozwiązujemy nierówność: Zauważmy teraz, że dla nierówność jest spełniona.
i rana w sercu – [pochodzą od] żony przewrotnej; a ręce bezwładne i kolana bez siły –. [od] takiej, która unieszczęśliwia swojego męża. 24 Początek grzechu przez kobietę. i przez nią też wszyscy umieramy. 25 Nie dawaj ujścia wodzie. ani swobody przewrotnej żonie. 26 Jeżeli nie trzyma się rąk twoich, odsuń ją od siebie.
Która równość jest prawdziwa? A.16 49=4 49 B.√0,0025=0,05 C.√0,81=0,09 D.121 225=11 25 2. Która równość jest fałszywa?
Agence De Rencontre Gratuit Pour Homme. nierówność lisa: nierówność 3(1−x)+x>3(3−2x) jest prawdziwa dla a)x=−2 b)a=3/2 c)a= √2 d) √5 z góry dziękuję 28 lut 16:52 tim: 3 − 3x + x > 9 − 6x 3 − 2x > 9 − 6x 4x > 6 x > 3/2 28 lut 17:26 tim: Która z odpowiedzi jest x > 1,5 28 lut 17:26
Nierówność z jedną niewiadomą jest to jedna z następujących form zdaniowych: gdzie f, g oznaczają funkcje zmiennej rzeczywistej. Zmienną x nazywamy niewiadomą. Pierwsze dwie nierówności nazywamy ostrymi, ostatnie dwie - nieostrymi. Przykłady nierówności Oto kilka przykładów nierówności: (tutaj niewiadomą jest m). Dziedzina nierówności Dziedzina nierówności jest to część wspólna dziedzin funkcji f, g. Przykład Jaka jest dziedzina nierówności ? Dziedziną jest , a wyrażenia jest zbiór . Zatem dziedziną tej nierówności jest zbiór Rozwiązywanie nierówności Rozwiązanie nierówności jest to każda liczba, która spełnia tę nierówność. Zbiór rozwiązań nierówności jest to zbiór utworzony ze wszystkich rozwiązań tej nierówności. Aby rozwiązać nierówność należy znaleźć jej zbiór rozwiązań. Rozwiązanie nierówności najlepiej jest przedstawiać w postaci przedziału liczbowego. Nierówności są równoważne jeżeli mają ten sam zbiór rozwiązań. Jeżeli nierówność nie ma rozwiązań (zbiorem rozwiązań jest zbiór pusty), to nazywamy ją sprzeczną. Przykład Przykład nierówności równoważnych: x+1>2 i x-1>0. Przykład nierówności sprzecznej: x20, obliczamy 1-4>0, co daje nam zdanie fałszywe -3>0. Liczba 1 nie spełnia więc naszej nierówności. Jak rozwiązać nierówność? Stosujemy pewne metody rozwiązywania nierówności. Poniżej przedstawiamy linki do artykułów, w których pokazujemy jak rozwiązujemy różne typy nierówności: Jak rozwiązać nierówność liniową? Jak rozwiązać nierówność kwadratową? Jak rozwiązać nierówność algebraiczną? Jak rozwiązać nierówność wykładniczą? Jak rozwiązać nierówność logarytmiczną? Jak rozwiązać nierówność trygonometryczną? Metoda nierówności równoważnych Zadania z rozwiązaniamiZadania związane z tematem:Nierówność Zadanie maturalne nr 5, matura 2016 (poziom podstawowy)Jedną z liczb, które spełniają nierówność jest: A. 1 B. -1 C. 2 D. -2Pokaż rozwiązanie zadania Zadanie maturalne nr 6, matura 2017 (poziom podstawowy)Do zbioru rozwiązań nierówności (x4 + 1)(2 - x) > 0 nie należy: A. -3 B. -1 C. 1 D. 3Pokaż rozwiązanie zadaniaInne zagadnienia z tej lekcjiRównanieRównanie - wiadomości podstawoweRozwiązywanie równańMetoda równań równoważnych polega na przekształcaniu równania w taki sposób, aby każde kolejne było równoważne danemu i łatwiejsze do nierównościMetoda nierówności równoważnych polega na ich przekształcaniu w tak, aby każde kolejne było równoważne i łatwiejsze do analizy starożytnychMetoda analizy starożytnych polega na przekształcaniu równania tak, aby otrzymać równanie łatwiejsze i spełniające rozwiązania równania wyjściowego. Test wiedzySprawdź swoje umiejętności z materiału zawartego w tej lekcji.© 2009-06-22, ART-239 Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
4. Która nierówność jest prawdziwa? A. (-15)' > C (-3)* (-0,6)
nierówność jest prawdziwa?A. B. C. D. 2. Watykan jest najmniejszym suwerennym państwem na świecie. Jego powierzchnia wynosi . Oblicz powierzchnię Watykanu w metrach kwadratowych i zapisz wynik w notacji wykładniczej. 3. Oblicz: 4. Podnieś do potęgi: a) b) kotpies12 nierówność jest prawdziwa?C. 2. Watykan jest najmniejszym suwerennym państwem na świecie. Jego powierzchnia wynosi 0,445km2. Oblicz powierzchnię Watykanu w metrach kwadratowych i zapisz wynik w notacji wykładniczej. 0,445km2=445000m2=3. Oblicz: do potęgi: a) b) More Questions From This User See All
Poniżej prezentuje typy zadań najczęściej pojawiające się na maturze podstawowej z matematyki w nowej formule (od 2015 roku). Pewniaki są aktualne dla najbliższej matury 2022. Polecam również przerobić zadania treningowe od CKE Wśród podanych przykładów znajdują się jedynie wybrane typy zadań. Pełną wiedzę niezbędną do zdania matury na 100% znajdziesz w kursie do matury podstawowej. Szybka nawigacja do zadania numer: 10 20 30 40 50 60 70 80 90 .Typ I - zadania z potęg i pierwiastków Na maturze bardzo często pojawiają się zadania sprawdzające umiejętność wykonywania działań na potęgach, pierwiastkach. Oto przykłady takich zadań:Liczba \(\frac{4^5\cdot 5^4}{20^4}\) jest równa A.\( 4^4 \) B.\( 20^{16} \) C.\( 20^5 \) D.\( 4 \) DDla każdej dodatniej liczba \(a\) iloraz \(\frac{a^{-2{,}6}}{a^{1{,}3}}\) jest równy A.\( a^{-3{,}9} \) B.\( a^{-2} \) C.\( a^{-1{,}3} \) D.\( a^{1{,}3} \) ALiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BTyp II - procenty Równie często na maturze podstawowej pojawiają się zadania z procentów (zazwyczaj jest jedno takie zadanie za 1 punkt) tego typu:Liczby \(a\) i \(c\) są dodatnie. Liczba \(b\) stanowi \(48\%\) liczby \(a\) oraz \(32\%\) liczby \(c\). Wynika stąd, że A.\( c=1{,}5a \) B.\( c=1{,}6a \) C.\( c=0{,}8a \) D.\( c=0{,}16a \) AButy, które kosztowały \(220\) złotych, przeceniono i sprzedano za \(176\) złotych. O ile procent obniżono cenę butów? A.\( 80 \) B.\( 20 \) C.\( 22 \) D.\( 44 \) BDany jest prostokąt o wymiarach \(40 \text{ cm} \times 100 \text{ cm}\). Jeżeli każdy z dłuższych boków tego prostokąta wydłużymy o \(20\%\), a każdy z krótszych boków skrócimy o \(20\%\), to w wyniku obu przekształceń pole tego prostokąta się o \( 8\% \) się o \( 4\% \) się o \( 8\% \) się o \( 4\% \) DKwotę \(1000\) zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości \(4\%\) w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości \(19\%\). Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa A.\( 1000\cdot \left ( 1+\frac{81}{100}\cdot \frac{4}{100} \right ) \) B.\( 1000\cdot \left ( 1-\frac{19}{100}\cdot \frac{4}{100} \right ) \) C.\( 1000\cdot \left ( 1-\frac{81}{100}\cdot \frac{4}{100} \right ) \) D.\( 1000\cdot \left ( 1+\frac{19}{100}\cdot \frac{4}{100} \right ) \) ATyp III - logarytmy Na maturze praktycznie zawsze pojawia się przynajmniej jedno zadanie na liczenie logarytmów. Oto przykładowe zadania:Liczba \(\log_{\sqrt{2}}(2\sqrt{2})\) jest równa A.\( \frac{3}{2} \) B.\( 2 \) C.\( \frac{5}{2} \) D.\( 3 \) DLiczba \(\frac{\log_3729}{\log_636}\) jest równa A.\( \log_6693 \) B.\( 3 \) C.\( \log_{\frac{1}{2}}\frac{81}{4} \) D.\( 4 \) BDane są liczby \(a=-\frac{1}{27}\), \(b=\log_{\frac{1}{4}}64\), \(c=\log_{\frac{1}{3}}27\). Iloczyn \(abc\) jest równy A.\( 3 \) B.\( \frac{1}{3} \) C.\( -\frac{1}{3} \) D.\( -9 \) CWartość wyrażenia \(\log_50{,}04-\frac{1}{2}\log_{25}1\) jest równa A.\( -3 \) B.\( -2\frac{1}{4} \) C.\( -2 \) D.\( 0 \) CTyp IV - równania i nierówności liniowe oraz funkcja liniowa Jednym z ważniejszych pojęć na maturze podstawowej jest funkcja liniowa i związane z nią równania oraz nierówności. Zazwyczaj z tego zagadnienia pojawia się na maturze od 2 do 5 zadań. Z funkcji liniowych szczególnie często zdarzają się zdania sprawdzające umiejętność liczenia miejsc zerowych, oraz badanie równoległości i prostopadłości \(\frac{x-1}{x+1}=x-1\) dokładnie dwa rozwiązania \( x=0 \), \(x=1\) dokładnie jedno rozwiązanie \( x=-1 \) dokładnie jedno rozwiązanie \( x=0 \) dokładnie jedno rozwiązanie \( x=1 \) ARównanie wymierne \(\frac{3x-1}{x+5}=3\), gdzie \(x\ne -5\), ma rozwiązań rzeczywistych. dokładnie jedno rozwiązanie rzeczywiste. dokładnie dwa rozwiązania rzeczywiste. dokładnie trzy rozwiązania rzeczywiste. ANajmniejszą liczbą całkowitą spełniającą nierówność \(\frac{x}{5}+\sqrt{7}\gt 0\) jest A.\( -14 \) B.\( -13 \) C.\( 13 \) D.\( 14 \) BNajmniejszą liczbą całkowitą spełniającą nierówność \(2(x − 2) \le 4(x −1)+1\) jest A.\( -2 \) B.\( -1 \) C.\( 0 \) D.\( 1 \) CRówność \(\frac{m}{5-\sqrt{5}}=\frac{5+\sqrt{5}}{5}\) zachodzi dla A.\( m=-5 \) B.\( m=1 \) C.\( m=4 \) D.\( m=5 \) CDana jest funkcja liniowa \(f(x)=\frac{3}{4}x+6\). Miejscem zerowym tej funkcji jest liczba A.\( 8 \) B.\( 6 \) C.\( -6 \) D.\( -8 \) DFunkcja liniowa \(f\) określona wzorem \(f(x)=2x+b\) ma takie samo miejsce zerowe, jakie ma funkcja \(g(x)=-3x+4\). Stąd wynika, że A.\( b=-\frac{8}{3} \) B.\( b=\frac{4}{3} \) C.\( b=4 \) D.\( b=-\frac{3}{2} \) AWykres funkcji liniowej \(y = 2x − 3\) przecina oś \(Oy\) w punkcie o współrzędnych A.\( (0,-3) \) B.\( (-3,0) \) C.\( (0,2) \) D.\( (0,3) \) AProsta \(l\) o równaniu \(y=m^2x+3\) jest równoległa do prostej \(k\) o równaniu \(y=(4m-4)x-3\). Zatem: A.\( m=2 \) B.\( m=-2 \) C.\( m=-2-2\sqrt{2} \) D.\( m=2+2\sqrt{2} \) AProste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla A.\( m=-\frac{1}{2} \) B.\( m=\frac{1}{2} \) C.\( m=1 \) D.\( m=2 \) AProste opisane równaniami \(y=\frac{2}{m-1}x+m-2\) oraz \(y=mx+\frac{1}{m+1}\) są prostopadłe, gdy A.\( m=2 \) B.\( m=\frac{1}{2} \) C.\( m=\frac{1}{3} \) D.\( m=-2 \) CTyp V - równania i nierówności kwadratowe oraz funkcja kwadratowa Zadania związane z funkcją kwadratową, to na każdej maturze punkt obowiązkowy. Musimy umieć znajdować miejsca zerowe funkcji kwadratowej (czyli rozwiązywać równania kwadratowe), wierzchołek oraz zapisywać w różnych postaciach funkcję kwadratową (ogólna, iloczynowa i kanoniczna). Musimy również umieć rysować wykresy funkcji kwadratowej, co szczególnie przydaje się podczas rozwiązywania nierówności kwadratowych (praktycznie zawsze pojawia się na maturze takie zadanie za 2 punkty). Często również pojawiają się zadania na znajdowanie wartości ekstremalnych funkcji kwadratowych na przedziałach domkniętych. Dokładniejsze omówienie tych wszystkich zagadnień znajdziesz w kursie do matury podstawowej (części: 14-15 oraz 26-30), a poniżej przykładowe, najczęstsze typy zadań:Równość \((2\sqrt{2}-a)^2=17-12\sqrt{2}\) jest prawdziwa dla A.\( a=3 \) B.\( a=1 \) C.\( a=-2 \) D.\( a=-3 \) AOblicz najmniejszą i największą wartość funkcji kwadratowej \(f(x)=x^2-6x+3\) w przedziale \(\langle 0,4\rangle \).\(f_{max}=3\) oraz \(f_{min}=-6\)Rozwiąż nierówność \(2x^2-4x\gt (x+3)(x-2)\).\(x\in (-\infty ;2)\cup (3;+\infty )\)Rozwiąż nierówność \(2x^2-4x\gt 3x^2-6x\).\(x\in (0;2)\)Rozwiąż nierówność \(20x \ge 4x^2 + 24\).\(x\in \langle 2;3\rangle \)Rozwiąż nierówność \(3x^2-6x\ge (x-2)(x-8)\)\(x\in (-\infty ,-4\rangle \cup \langle 2,+\infty )\)Funkcja kwadratowa \(f\) określona jest wzorem \(f(x) = ax^2 + bx + c\). Zbiorem rozwiązań nierówności \(f(x) \gt 0\) jest przedział \((0,12)\). Największa wartość funkcji \(f\) jest równa \(9\). Oblicz współczynniki \(a\), \(b\) i \(c\) funkcji \(f\).\(a=-\frac{1}{4}\), \(b=3\), \(c=0\)Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(1,9)\). Liczby \(-2\) i \(4\) to miejsca zerowe funkcji \(f\). Najmniejsza wartość funkcji \(f\) w przedziale \(\langle -1;2 \rangle \) jest równa A.\( 2 \) B.\( 5 \) C.\( 8 \) D.\( 9 \) BJeśli funkcja kwadratowa \(f(x)=x^2+2x+3a\) nie ma ani jednego miejsca zerowego, to liczba \(a\) spełnia warunek A.\( a\lt -1 \) B.\( -1\le a\lt 0 \) C.\( 0\le a\lt \frac{1}{3} \) D.\( a\gt \frac{1}{3} \) DFunkcja kwadratowa jest określona wzorem \(f(x)=x^2-11x\). Oblicz najmniejszą wartość funkcji \(f\) w przedziale \(\langle -6,6\rangle \). \(-30\frac{1}{4}\)Typ VI - różne zadania z funkcji Częstym na maturze zdarza się zadanie, w którym należy wyznaczyć zbiór wartości funkcji danej na wykresie, lub odgadnąć przesunięcie. Oto przykładowe takie zadania:Na rysunku przedstawiono wykres funkcji \(f\). Zbiorem wartości funkcji \(f\) jest A.\( (-2,2\rangle \) B.\( \langle -2,2\rangle \) C.\( \langle -2,2) \) D.\( (-2,2) \) ANa rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej \(f\). Wierzchołkiem tej paraboli jest punkt \(W=(1,9)\). Liczby \(-2\) i \(4\) to miejsca zerowe funkcji \(f\). Zbiorem wartości funkcji \(f\) jest przedział A.\( (-\infty ;-2\rangle \) B.\( \langle -2;4 \rangle \) C.\( \langle 4;+\infty ) \) D.\( (-\infty ;9\rangle \) DGdy przesuniemy wykres funkcji \(f(x)=2x-3\) o \(2\) jednostki w prawo i \(4\) jednostki w górę, to otrzymamy wykres funkcji opisanej wzorem A.\( y=2(x-2)+4 \) B.\( y=2(x-2)-4 \) C.\( y=2(x-2)+1 \) D.\( y=2(x+2)+4 \) CFunkcja \(g\) jest określona wzorem A.\( g(x)=f(x-1) \) B.\( g(x)=f(x)-1 \) C.\( g(x)=f(x+1) \) D.\( g(x)=f(x)+1 \) BTyp VII - układy równań Często na maturze jest jedno zadanie z układu równań następujących typów:Układ równań \(\begin{cases} 2x-3y=5 \\ -4x+6y=-10 \end{cases} \) ma rozwiązań. dokładnie jedno rozwiązanie. dokładnie dwa rozwiązania. nieskończenie wiele rozwiązań. DUkład równań \(\begin{cases} x-y=3 \\ 2x+0{,}5y=4 \end{cases} \) opisuje w układzie współrzędnych na płaszczyźnie nieskończony. 2 różne punkty. jeden punkt. pusty. CTyp VIII - wartość bezwzględna i błędy Czasami na maturze jest jedno zadanie z wartości bezwzględnej lub błędów względnych i bezwzględnych. Oto przykładowe zadania jakie mogą się pojawić:Liczba \(\frac{|3-9|}{-3}\) jest równa A.\( 2 \) B.\( -2 \) C.\( 0 \) D.\( -4 \) BW tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat. kolejne lata123456 przyrost (w cm)10107887 Oblicz średni roczny przyrost wysokości tej sosny w badanym okresie sześciu lat. Otrzymany wynik zaokrąglij do \(1\) cm. Oblicz błąd względny otrzymanego przybliżenia. Podaj ten błąd w procentach.\(4\%\)Typ IX - trygonometria Zadania z trygonometrii pojawiają się a każdej maturze podstawowej. Oto najczęstsze typy:Kąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{2}{3}\). Wtedy A.\( \sin \alpha =\frac{3\sqrt{13}}{26} \) B.\( \sin \alpha =\frac{\sqrt{13}}{13} \) C.\( \sin \alpha =\frac{2\sqrt{13}}{13} \) D.\( \sin \alpha =\frac{3\sqrt{13}}{13} \) CLiczba \( \sin 150^\circ \) jest równa liczbie A.\( \cos 60^\circ \) B.\( \cos 120^\circ \) C.\( \operatorname{tg} 120^\circ \) D.\( \operatorname{tg} 60^\circ \) ADany jest trójkąt prostokątny o kątach ostrych \(\alpha \) i \(\beta \), w którym \(\sin \alpha = \frac{\sqrt{6}}{3}\). Wtedy A.\( \cos \alpha =\frac{\sqrt{3}}{2} \) B.\( \cos \beta =\frac{\sqrt{6}}{3} \) C.\( \operatorname{tg} \alpha =\frac{\sqrt{3}}{3} \) D.\( \operatorname{tg} \beta =\frac{\sqrt{6}}{2} \) BDana jest liczba \(a=\sin 72^\circ \). Zapisz liczbę \(1+\operatorname{tg}^2 72^\circ \) w zależności od \(a\).\(\frac{1}{1-a^2}\)Wartość wyrażenia \((\operatorname{tg} 60^\circ +\operatorname{tg} 45^\circ )^2-\sin 60^\circ \) jest równa A.\( 2-\frac{3\sqrt{3}}{2} \) B.\( 2+\frac{\sqrt{3}}{2} \) C.\( 4-\frac{\sqrt{3}}{2} \) D.\( 4+\frac{3\sqrt{3}}{2} \) DW układzie współrzędnych zaznaczono kąt \(\alpha \). Jedno z ramion kąta \(\alpha \) przechodzi przez punkt \(P=(-4,3)\). Wtedy: A.\( \cos \alpha = \frac{4}{5} \) B.\( \cos \alpha = -\frac{4}{5} \) C.\( \cos \alpha = -\frac{4}{3} \) D.\( \cos \alpha = -\frac{3}{4} \) BTyp X - ciąg arytmetyczny i geometryczny Zadania z ciągów zawsze pojawiają się na maturze. Zawsze są przynajmniej dwa zadania z tego zagadnienia. Poniżej prezentuję najczęstsze typy zadań z ciągów:Czternasty wyraz ciągu arytmetycznego jest równy \(8\), a różnica tego ciągu jest równa \(\left (-\frac{3}{2}\right )\). Siódmy wyraz tego ciągu jest równy A.\( \frac{37}{2} \) B.\( -\frac{37}{2} \) C.\( -\frac{5}{2} \) D.\( \frac{5}{2} \) AWszystkie dwucyfrowe liczby naturalne podzielne przez \(7\) tworzą rosnący ciąg arytmetyczny. Dwunastym wyrazem tego ciągu jest liczba A.\( 77 \) B.\( 84 \) C.\( 91 \) D.\( 98 \) CW rosnącym ciągu geometrycznym \((a_n)\), określonym dla \(n\ge 1\), spełniony jest warunek \(a_4=3a_1\). Iloraz \(q\) tego ciągu jest równy A.\( q=\frac{1}{\sqrt[3]{3}} \) B.\( q=\frac{1}{3} \) C.\( q=3 \) D.\( q=\sqrt[3]{3} \) DTrójwyrazowy ciąg \((x+1,x-1,2x)\) jest arytmetyczny dla A.\( x=-3 \) B.\( x=-1 \) C.\( x=0 \) D.\( x=2 \) ACiąg \((x,2x+3,4x+3)\) jest geometryczny. Pierwszy wyraz tego ciągu jest równy A.\( -4 \) B.\( 1 \) C.\( 0 \) D.\( -1 \) DTyp XI - geometria płaska W geometrii najczęściej przydaje się nam twierdzenie Pitagorasa i musimy je umieć stosować na blachę (jest ono również bardzo przydatne w geometrii przestrzennej). Zadania z geometrii zazwyczaj nie są szablonowe, więc trudno tu podać konkretne typy jako pewniaki. Na pewno można wyróżnić zadania z kątami wpisanymi i środkowymi w okręgu - często się pojawiają na maturze. Także często pojawia się podobieństwo \(A\), \(B\), \(C\) i \(D\) leżą na okręgu o środku \(S\). Cięciwa \(CD\) przecina średnicę \(AB\) tego okręgu w punkcie \(E\) tak, że \(|\sphericalangle BEC|=100^\circ \). Kąt środkowy \(ASC\) ma miarę \(110^\circ \) (zobacz rysunek). Kąt wpisany \(BAD\) ma miarę A.\( 15^\circ \) B.\( 20^\circ \) C.\( 25^\circ \) D.\( 30^\circ \) CW okręgu o środku \(O\) dany jest kąt o mierze \(50^\circ \), zaznaczony na rysunku. Miara kąta oznaczonego na rysunku literą \(\alpha \) jest równa A.\( 40^\circ \) B.\( 50^\circ \) C.\( 20^\circ \) D.\( 25^\circ \) APrzedstawione na rysunku trójkąty \(ABC\) i \(PQR\) są podobne. Bok \(AB\) trójkąta \(ABC\) ma długość A.\( 8 \) B.\( 8{,}5 \) C.\( 9{,}5 \) D.\( 10 \) BOkręgi o promieniach \(3\) i \(4\) są styczne zewnętrznie. Prosta styczna do okręgu o promieniu \(4\) w punkcie \(P\) przechodzi przez środek okręgu o promieniu \(3\) (zobacz rysunek). Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności \(P\), jest równe A.\( 14 \) B.\( 2\sqrt{33} \) C.\( 4\sqrt{33} \) D.\( 12 \) BTyp XII - geometria przestrzenna Zadania ze stereometrii często pojawiają się za większa liczbę podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek). Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt \(\alpha \) o mierze A.\( 30^\circ \) B.\( 45^\circ \) C.\( 60^\circ \) D.\( 75^\circ \) BWysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.\(P=144+384\sqrt{2}\)Podstawą ostrosłupa \(ABCDS\) jest prostokąt, którego boki pozostają w stosunku \(3 : 4\), a pole jest równe \(192\) (zobacz rysunek). Punkt \(E\) jest wyznaczony przez przecinające się przekątne podstawy, a odcinek \(SE\) jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem \(30^\circ\). Oblicz objętość ostrosłupa. \(V=\frac{640\sqrt{3}}{3}\)Kąt rozwarcia stożka ma miarę \(120^\circ \), a tworząca tego stożka ma długość \(4\). Objętość tego stożka jest równa A.\( 36\pi \) B.\( 18\pi \) C.\( 24\pi \) D.\( 8\pi \) DTrójkąt równoboczny \(ABC\) jest podstawą ostrosłupa prawidłowego \(ABCS\), w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem \(60^\circ \), a krawędź boczna ma długość \(7\) (zobacz rysunek). Oblicz objętość tego ostrosłupa. \(V=21\sqrt{7}\)Typ XIII - geometria analityczna Z geometrii analitycznej na pewno musimy umieć liczyć długość odcinka, wyznaczać równania prostych przechodzących przez dwa punkty, a także równoległych i prostopadłych, wyznaczać środek odcinka. Oto przykładowe zadania z tych zagadnień:W układzie współrzędnych dane są punkty \(A=(a,6)\) oraz \(B=(7,b)\). Środkiem odcinka \(AB\) jest punkt \(M=(3,4)\). Wynika stąd, że A.\( a=5 \) i \(b=5\) B.\( a=-1 \) i \(b=2\) C.\( a=4 \) i \(b=10\) D.\( a=-4 \) i \(b=-2\) BNa rysunku jest przedstawiona prosta zawierająca przekątną \(AC\) rombu \(ABCD\) oraz wierzchołki \(A=(-2,1)\) i \(C=(4,5)\) tego rombu. Wskaż równanie prostej zawierającej przekątną \(BD\) tego rombu. A.\( y=-\frac{2}{3}x+\frac{11}{3} \) B.\( y=-\frac{3}{2}x+4 \) C.\( y=-x+4 \) D.\( y=-\frac{3}{2}x+\frac{9}{2} \) DOkręgi o środkach \(S_1=(3,4)\) oraz \(S_2=(9,-4)\) i równych promieniach są styczne zewnętrznie. Promień każdego z tych okręgów jest równy A.\( 8 \) B.\( 6 \) C.\( 5 \) D.\( \frac{5}{2} \) CW układzie współrzędnych dane są punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta \(AB\) przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).\(x=-7\)Typ XIV - statystyka i rachunek prawdopodobieństwa Ze statystyki najczęściej pojawiają się zadania związane ze średnią arytmetyczną i medianą. Zadania z kombinatoryki i rachunku prawdopodobieństwa zawsze opierają się na regule mnożenia i dodawania (zadani z kostkami i monetami, losowanie kul lub liczb ze zbioru).Jeżeli do zestawu czterech danych: \(4, 7, 8, x\) dołączymy liczbę \(2\), to średnia arytmetyczna wzrośnie o \(2\). Zatem A.\( x=-51 \) B.\( x=-6 \) C.\( x=10 \) D.\( x=29 \) AŚrednia arytmetyczna zestawu danych: \[2,4,7,8,9\] jest taka sama jak średnia arytmetyczna zestawu danych: \[2,4,7,8,9,x.\] Wynika stąd, że A.\( x=3 \) B.\( x=5 \) C.\( x=6 \) D.\( x=0 \) CŚrednia arytmetyczna sześciu liczb naturalnych: \(31, 16, 25, 29, 27, x\), jest równa \(\frac{x}{2}\). Mediana tych liczb jest równa A.\( 26 \) B.\( 27 \) C.\( 28 \) D.\( 29 \) CW każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga - niebieska. Z każdego pojemnika losujemy jedną kulę. Niech \(p\) oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy A.\( p=\frac{3}{8} \) B.\( p=\frac{1}{4} \) C.\( p=\frac{2}{3} \) D.\( p=\frac{1}{2} \) ARzucamy trzy razy symetryczną monetą. Niech \(p\) oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy A.\( 0\le p\le 0{,}2 \) B.\( 0{,}2\le p\le 0{,}35 \) C.\( 0{,}35\lt p\le 0{,}5 \) D.\( 0{,}5\lt p\le 1 \) CIle jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez \(3\)? A.\( 12 \) B.\( 24 \) C.\( 29 \) D.\( 30 \) DZe zbioru siedmiu liczb naturalnych \(\{1, 2, 3, 4, 5, 6, 7\}\) losujemy dwie różne liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że większą z wylosowanych liczb będzie liczba \(5\). \(\frac{4}{21}\) Pewniaki na STARĄ podstawę programową Poniżej prezentuję pewniaki do "starej" podstawy programowej. Cena towaru bez podatku VAT jest równa \(60\) zł. Towar ten wraz z podatkiem VAT w wysokości \(22\%\) kosztuje A.\( 73{,}20 \) zł B.\( 49{,}18 \) zł C.\( 60{,}22 \) zł D.\( 82 \) zł ASamochód kosztował \(30000\) zł. Jego cenę obniżono o \(10\%\), a następnie cenę po tej obniżce ponownie obniżono o \(10\%\). Po tych obniżkach samochód kosztował A.\( 24400 \) zł B.\( 24700 \) zł C.\( 24000 \) zł D.\( 24300 \) zł DIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CRóżnica \(\log_{3}9-\log_{3}1\) jest równa A.\( 0 \) B.\( 1 \) C.\( 2 \) D.\( 3 \) CWskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej. A.\( |x-1| \lt 3 \) B.\( |x+1| \lt 3 \) C.\( |x+1| > 3 \) D.\( |x-1| > 3 \) BWskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności \(|x-2| \ge 3\). BKwadrat liczby \(x=5+2\sqrt{3}\) jest równy A.\( 37 \) B.\( 25+4\sqrt{3} \) C.\( 37+20\sqrt{3} \) D.\( 147 \) CRównanie \(\frac{x^2-4}{(x-4)(x+4)}=0\) ma rozwiązań. dokładnie jedno rozwiązanie. dokładnie dwa rozwiązania. dokładnie cztery rozwiązania. CWskaż \(m\), dla którego funkcja liniowa \(f(x)=(m−1)x+6\) jest rosnąca A.\( m=-1 \) B.\( m=0 \) C.\( m=1 \) D.\( m=2 \) DW ciągu arytmetycznym \((a_n)\) mamy: \(a_2=5\) i \(a_4=11\). Oblicz \(a_5\). A.\( 8 \) B.\( 14 \) C.\( 17 \) D.\( 6 \) BW ciągu geometrycznym \((a_n)\) dane są: \(a_1=2\) i \(a_2=12\). Wtedy A.\( a_4=26 \) B.\( a_4=432 \) C.\( a_4=32 \) D.\( a_4=2592 \) BKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CProsta \(l\) ma równanie \(y=-\frac{1}{4}x+7\). Wskaż równanie prostej prostopadłej do prostej \(l\). A.\( y=\frac{1}{4}x+1 \) B.\( y=-\frac{1}{4}x-7 \) C.\( y=4x-1 \) D.\( y=-4x+7 \) CProste o równaniach \(y=2x+3\) oraz \(y=-\frac{1}{3}x+2\) równoległe i różne prostopadłe się pod kątem innym niż prosty się CRozwiąż nierówność \(x^2−14x+24 \gt 0\).\(x\in (-\infty ;2)\cup (12;+\infty )\)Rozwiąż równanie \(x^3−3x^2+2x−6=0\).\(x=3\)Ciąg \((9, x, 19)\) jest arytmetyczny, a ciąg \((x, 42, y, z)\) jest geometryczny. Oblicz \(x\), \(y\) oraz \(z\).\(x=14\), \(y=126\), \(z=378\)Z miejscowości \(A\) i \(B\) oddalonych od siebie o \(182\) km wyjeżdżają naprzeciw siebie dwaj rowerzyści. Rowerzysta jadący z miejscowości \(B\) do miejscowości \(A\) jedzie ze średnią prędkością mniejszą od \(25\) km/h. Rowerzysta jadący z miejscowości \(A\) do miejscowości \(B\) wyjeżdża o \(1\) godzinę wcześniej i jedzie ze średnią prędkością o \(7\) km/h większą od średniej prędkości drugiego rowerzysty. Rowerzyści spotkali się w takim miejscu, że rowerzysta jadący z miejscowości \(A\) przebył do tego miejsca \(\frac{9}{13}\) całej drogi z \(A\) do \(B\). Z jakimi średnimi prędkościami jechali obaj rowerzyści?\(v_1=7\) km/h, \(v_2=14\) km/h
która nierówność jest prawdziwa 16 49